Probability Formulas and Concepts: WIP, not complete

Avi Parshan
2024-03-20

Counting:

$$
\begin{aligned}
& \text { Order matters, no repetition } \\
=n & \frac{n!}{(n-r)!} \\
& n r \text { Order matters, repetition }
\end{aligned} n^{r}
$$

Order doesn't matter, no repetition

$$
\frac{n!}{r!(n-r)!}=\binom{n}{r}=\binom{n}{n-r}
$$

$$
=\frac{n P r}{r!}
$$

Order doesn't matter, repetition $\quad \frac{(n+r-1)!}{r!(n-1)!}=$

$$
\binom{r+n-1}{r}=\binom{r+n-1}{n-1}
$$

$=$ number of ways to choose r objects from n objects $=$ number of ways to seat n people around a circle table $=(n-1)$!

Probability of an event not occurring $\quad P(\bar{E})=1-P(E)$
Prob of event E $\quad P(E)=\frac{\text { number of outcomes in } \mathrm{E}}{\text { number of outcomes in } \Omega}$
PIE $\quad: \quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$

PIE $2: \quad P(A \cap B)=P(A)+P(B)-P(A \cup B)$

Conditional $: \quad P(A \cap \bar{B})=P(A)-P(A \cap B)=P(A-B)$

$$
\begin{array}{r}
\text { A given B occurred }: \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\text { Total Probability }: \quad P(A)=\sum_{i=1}^{n} P\left(B_{i}\right) \cdot P\left(A \mid B_{i}\right) \\
\text { Bayes } \quad: \quad P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)} \\
\text { Bayes with LTP } \quad: \quad P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right)}
\end{array}
$$

sample bayes for $2: \quad P(B)=P\left(A_{i}\right) \cdot P\left(B \mid A_{i}\right)+P\left(A_{j}\right) \cdot P\left(B \mid A_{j}\right)$
Probability and Sample Space:
The sample space is denoted by Ω. When order matters, such as in cases where selection is done with repetition, the sample space is considered a uniform sample space.

If using "at least or at most" in a question, either use the complement or separate into cases of disjoint events (to avoid double counting)
Probability space:
probability function maps events (subsetof Ω) to interval $[0,1]$
satisfies two axioms $P(\Omega)=1$ and if A,B are disjoint events: $(A \cap B=\emptyset)$
Properties of probability space:

$$
\begin{aligned}
P(\bar{A})=1-P(A) & \text { Probability of an event not occurring } \\
\bar{A} \cap A=\emptyset & \text { A and not A are disjoint events } \\
P(A \cup \bar{A})=P(\Omega) & \text { A and not A are disjoint events } \\
P(A)+P(\bar{A})=P(\Omega) & \\
P(\emptyset)=0 & \emptyset \cup \bar{\emptyset}=\emptyset \cup U \mathrm{U} \text { is universal set } \\
\emptyset=\bar{\Omega} & \text { empty set is the complement of the universal set } \\
& A \subseteq B \rightarrow P(A) \leq P(B) \\
& A \subseteq B \rightarrow P(B)-P(A)=P(B-A)=P(B \cap \bar{A})
\end{aligned}
$$

Overlapping events:

$$
\begin{array}{r}
\text { for any events A,B } \\
\qquad P(A \cap B) \leq P(A) \leq P(A \cup B) \\
A \cap B \subseteq A \subseteq A \cup B \quad \text { and } A \cap B \subseteq B \subseteq A \cup B \\
\text { probability of unions: } P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
\bar{A} \cap \bar{B}=\overline{A \cup B} \quad P(\bar{A} \cap \bar{B})=1-P(A \cup B)=\overline{P(A \cup B)}
\end{array}
$$

Disjoint events:

$$
P(A \cap B)=0 \quad(A \cap B)=\emptyset
$$

almost always dependent as we know that if A occurs, B doesn't occur
Independent events:

$$
\begin{array}{ll}
\text { Probability of two independent events } & P(A \cap B)=P(A) \cdot P(B) \\
& P(A \mid B)=P(A) \quad P(B \mid A)=P(B)
\end{array}
$$

$$
P(A \mid B)=P(A) \rightarrow P(B \mid A)=P(B)
$$

A,B independent $\leftrightarrow P(A \cap B)=P(A) \cdot P(B)$
for A, \bar{B} independent

$$
A \cap B \cup A \cap \bar{B}=A
$$

Law of total probability:
Let A1, A2, ... An be disjoint events (a partition of the sample space)
Let B be any event

$$
\begin{array}{r}
\rightarrow P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) \cdot P\left(A_{i}\right) \\
P(B)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)
\end{array}
$$

Probability Functions:
Properties of expected values:
for any constant $c: E[c x]=c \cdot E[x], E[x+c]=E[x]+c$
for any random variables $x, y: E[x+y]=E[x]+E[y]$
Linearity of Expectationfor any constants $a, b, c: E[a x+b y+c]=a \cdot E[x]+b \cdot E[y]+c$ for independent random variables $v, z: E[v z]=E[v] \cdot E[z]$

$$
\mathrm{E}[x]=\text { expected value of } x=\sum_{k} k \cdot P(X=k), \text { game is fair if } E[x]=0
$$

over a long period of time playing game, no party should lose money, if $E[x]>0$,
the player will be expected to profit on average, vs if $E[x]<0$,
house expected to profit on average

$$
\begin{array}{r}
\mathrm{V}(x)=\text { variance of } X=E\left[x^{2}\right]-\mu^{2} \\
\mathrm{E}[x]=\mu \\
\sigma(x)=\text { standard deviation of } \mathrm{x}=\sqrt{\mathrm{V}(x)} \\
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y) \text { for any r.v. } \mathrm{X} \text { and } \mathrm{Y}
\end{array}
$$

Discrete Random Variable Distributions:
generic type of probability function which depends on one or more parameters

$$
X \sim U(a, b)=\text { Uniform }
$$

$a=$ minimum value $b=$ maximum value

$$
X \sim B(n, p)=\text { Binomial }
$$

$n=$ total number of trials $p=$ probability of success
With replacement, run same experiment each time, group is usually a population (huge number)

$$
X \sim G(p)=\text { Geometric }
$$

$p=$ probability of success $x=$ number of times experiment is done
with replacement, run same experiment each time till single success (and include in result)

$$
X \sim P(\lambda)=\text { Poisson }
$$

$\lambda=$ average number of successes per interval (np)
k is all possible value of x
if $\mathrm{E}[\mathrm{x}]$ is the number of customers entering a store at a given time. $\mathrm{K}=$ prob * period of time

$$
\begin{array}{r}
\quad k=0: P(X=0)=e^{-\lambda} \\
k=1: P(X=1)=e^{-\lambda} \cdot \lambda \\
k=2: P(X=2)=\frac{e^{-\lambda} \cdot \lambda^{2}}{2}
\end{array}
$$

$$
X \sim H(N, n, p)=\text { Hypergeometric }
$$

$p=M / N N=$ total number of objects

$$
M=\text { total number of special objects }
$$

$n=$ number of objects selected sample size
$p=$ probability of success
without replacement, run different experiment each time, group is fixed size

$$
X \sim N B(p, r)=\text { Negative Binomial }
$$

$$
p=\text { probability of success }
$$

$r=$ number of successes till stop, include final number in result
essentially its running geometric distribution r times

Approximations:

$$
\begin{aligned}
X & \sim B(n, p) \approx \mathcal{N}(n p, n p(1-p)) \\
P(X=k) & \rightarrow k-0.5<X<k+0.5
\end{aligned}
$$

Misc:

$$
\begin{aligned}
& \text { Sum of infinite geometric sequence } \begin{aligned}
& \frac{a}{1-r} \\
& \begin{aligned}
a= & \text { first term } \\
r & =\text { common ratio }
\end{aligned} \\
& \text { Sum of finite geometric sequence } \quad \frac{a\left(1-r^{n}\right)}{1-r} \\
& \\
& \qquad \begin{array}{l}
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \\
\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c} \\
1-(1-x)=x
\end{array}
\end{aligned} .
\end{aligned}
$$

